Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.960
Filter
1.
Anal Chim Acta ; 1298: 342408, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38462333

ABSTRACT

BACKGROUND: In vitro screening strategies based on the inhibition of α-glucosidase (GAA) activity have been widely used for the discovery of potential antidiabetic drugs, but they still face some challenges, such as poor enzyme stability, non-reusability and narrow range of applicability. To overcome these limitations, an in vitro screening method based on GAA@GOx@Cu-MOF reactor was developed in our previous study. However, the method was still not satisfactory enough in terms of construction cost, pH stability, organic solvent resistance and reusability. Thence, there is still a great need for the development of in vitro screening methods with lower cost and wider applicability. RESULTS: A colorimetric sensing strategy based on GAA/(Au-Au/IrO2)@Cu(PABA) cascade catalytic reactor, which constructed through simultaneous encapsulating Au-Au/IrO2 nanozyme with glucose oxidase-mimicking and peroxidase-mimicking activities and GAA in Cu(PABA) carrier with peroxidase-mimicking activity, was innovatively developed for in vitro screening of GAA inhibitors in this work. It was found that the reactor not only exhibited excellent thermal stability, pH stability, organic solvent resistance, room temperature storage stability, and reusability, but also possessed cascade catalytic performance, with approximately 12.36-fold increased catalytic activity compared to the free system (GAA + Au-Au/IrO2). Moreover, the in vitro GAA inhibitors screening method based on this reactor demonstrated considerable anti-interference performance and detection sensitivity, with a detection limit of 4.79 nM for acarbose. Meanwhile, the method owned good reliability and accuracy, and has been successfully applied to the in vitro screening of oleanolic acid derivatives as potential GAA inhibitors. SIGNIFICANCE: This method not only more effectively solved the shortcomings of poor stability, narrow scope of application, and non-reusability of natural enzymes in the classical method compared with our previous work, but also broaden the application scope of Au-Au/IrO2 nanozyme with glucose oxidase and peroxidase mimicking activities, and Cu(PABA) carrier with peroxidase mimicking activity, which was expected to be a new generation candidate method for GAA inhibitor screening.


Subject(s)
4-Aminobenzoic Acid , Glycoside Hydrolase Inhibitors , Glycoside Hydrolase Inhibitors/pharmacology , Glucose Oxidase , Reproducibility of Results , Colorimetry/methods , Peroxidases , Solvents , Hydrogen Peroxide
2.
Protein Expr Purif ; 219: 106474, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38518927

ABSTRACT

The polyphenol oxidase (PPO) enzyme, which causes enzymatic browning, has been repeatedly purified from fruit and vegetables by affinity chromatography. In the present research, Sepharose 4B-l-tyrosine-4-amino-2-methylbenzoic acid, a novel affinity gel for the purification of the PPO enzyme with high efficiency, was synthesized. Additionally, Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity gel, known in the literature, was also synthesized, and 9.02, 16.57, and 28.13 purification folds were obtained for the PPO enzymes of potato, mushroom, and eggplant by the reference gel. The PPO enzymes of potato, mushroom, and eggplant were purified 41.17, 64.47, and 56.78-fold from the new 4-amino-2-methylbenzoic acid gel. Following their isolation from the new affinity column, the assessment of PPO enzyme purity involved the utilization of SDS-PAGE. According to the results from SDS-PAGE and native PAGE, the molecular weight of each enzyme was 50 kDa. Then, the inhibition effects of naringin, morin hydrate, esculin hydrate, homovanillic acid, vanillic acid, phloridzin dihydrate, and p-coumaric acid phenolic compounds on purified potato, mushroom, and eggplant PPO enzyme were investigated. Among the tested phenolic compounds, morin hydrate was determined to be the most potent inhibitor on the potato (Ki: 0.07 ± 0.03 µM), mushroom (Ki: 0.7 ± 0.3 µM), and eggplant (Ki: 4.8 ± 1.2 µM) PPO enzymes. The studies found that the weakest inhibitor was homovanillic acid for the potato (Ki: 1112 ± 324 µM), mushroom (Ki: 567 ± 81 µM), and eggplant (Ki: 2016.7 ± 805.6 µM) PPO enzymes. Kinetic assays indicated that morin hydrate was a remarkable inhibitor on PPO.


Subject(s)
Catechol Oxidase , Chromatography, Affinity , Catechol Oxidase/chemistry , Catechol Oxidase/isolation & purification , Catechol Oxidase/antagonists & inhibitors , Agaricales/enzymology , Solanum tuberosum/enzymology , Solanum tuberosum/chemistry , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Solanum melongena/enzymology , Solanum melongena/chemistry , Coumaric Acids/chemistry , Propionates/chemistry , meta-Aminobenzoates/chemistry , 4-Aminobenzoic Acid/chemistry
3.
Eur J Pharm Biopharm ; 196: 114202, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309539

ABSTRACT

The crystal structure of a new Progesterone (PROG) co-crystal with para-aminobenzoic acid (PABA) showing enhanced solution properties is reported. PROG-PABA co-crystal was first identified though an in silico coformer screening process using the CSD Co-crystal deign function, then confirmed through a solution evaporation crystallisation experiment. The resulting co-crystal was characterized using single crystal X-ray diffraction, differential scanning calorimetry and Fourier-transform infrared spectroscopy. Liquid assisted grinding was selected as a suitable scale up method compared to spray drying and antisolvent methods due to minimal starting material phases in the final product. Following scale up, aqueous solubility, stability and dissolution measurements were carried out. PROG-PABA showed increased distinct aqueous solubility and dissolution compared to PROG starting material and was shown to be stable at 75 % relative humidity for 3 months. Tablets containing co-crystal were produced then compared to the Utrogestan® soft gel capsule formulation through a dissolution experiment. PROG-PABA tablets showed a substantial increase in dissolution over the course of the experiment with over 30× the amount of PROG dissolved at the 3-hour time point. This co-crystal shows positive implications for developing an improved oral PROG formulation.


Subject(s)
4-Aminobenzoic Acid , Progesterone , Progesterone/chemistry , Crystallography, X-Ray , Solubility , Crystallization/methods , Calorimetry, Differential Scanning , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared/methods
4.
Drug Metab Rev ; 56(1): 80-96, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38230664

ABSTRACT

Two aminosalicylate isomers have been found to possess useful pharmacological behavior: p-aminosalicylate (PAS, 4AS) is an anti-tubercular agent that targets M. tuberculosis, and 5-aminosalicylate (5AS, mesalamine, mesalazine) is used in the treatment of ulcerative colitis (UC) and other inflammatory bowel diseases (IBD). PAS, a structural analog of pABA, is biosynthetically incorporated by bacterial dihydropteroate synthase (DHPS), ultimately yielding a dihydrofolate (DHF) analog containing an additional hydroxyl group in the pABA ring: 2'-hydroxy-7,8-dihydrofolate. It has been reported to perturb folate metabolism in M. tuberculosis, and to selectively target M. tuberculosis dihydrofolate reductase (mtDHFR). Studies of PAS metabolism are reviewed, and possible mechanisms for its mtDHFR inhibition are considered. Although 5AS is a more distant structural relative of pABA, multiple lines of evidence suggest a related role as a pABA antagonist that inhibits bacterial folate biosynthesis. Structural data support the likelihood that 5AS is recognized by the DHPS pABA binding site, and its effects probably range from blocking pABA binding to formation of a dead-end dihydropterin-5AS adduct. These studies suggest that mesalamine acts as a gut bacteria-directed antifolate, that selectively targets faster growing, more folate-dependent species.


Subject(s)
Aminosalicylic Acid , Mycobacterium tuberculosis , Tuberculosis , Humans , Mesalamine/pharmacology , 4-Aminobenzoic Acid/pharmacology , Aminosalicylic Acid/pharmacology , Folic Acid/metabolism , Folic Acid/pharmacology
5.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203788

ABSTRACT

Detection of the Kirsten rat sarcoma gene (KRAS) mutational status is an important factor for the treatment of various malignancies. The most common KRAS-activating mutations are caused by single-nucleotide mutations, which are usually determined by using PCR, using allele-specific DNA primers. Oligonucleotide primers with uncharged or partially charged internucleotide phosphate modification have proved their ability to increase the sensitivity and specificity of various single nucleotide mutation detection. To enhance the specificity of single nucleotide mutation detection, the novel oligonucleotides with four types of uncharged and partially charged internucleotide phosphates modification, phosphoramide benzoazole (PABA) oligonucleotides (PABAO), was used to prove the concept on the KRAS mutation model. The molecular effects of different types of site-specific PABA modification in a primer or a template on a synthesis of full-length elongation product and PCR efficiency were evaluated. The allele-specific PCR (AS-PCR) on plasmid templates showed a significant increase in analysis specificity without changes in Cq values compared with unmodified primer. PABA modification is a universal mismatch-like disturbance, which can be used for single nucleotide polymorphism discrimination for various applications. The molecular insights of the PABA site-specific modification in a primer and a template affect PCR, structural features of four types of PABAO in connection with AS-PCR results, and improvements of AS-PCR specificity support the further design of novel PCR platforms for various biological targets testing.


Subject(s)
4-Aminobenzoic Acid , Amides , Oligonucleotides , Phosphoramides , Phosphoric Acids , Oligonucleotides/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins p21(ras) , Phosphates , Nucleotides , Azoles , Polymerase Chain Reaction
6.
Int J Pharm ; 652: 123793, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38195033

ABSTRACT

Pharmaceutical cocrystallization has been widely used to improve physicochemical properties of APIs. However, developing cocrystal formulation with proven clinical success remains scarce. Successful translation of a cocrystal to suitable dosage forms requires simultaneously improvement of several deficient physicochemical properties over the parent API, without deteriorating other properties critical for successful product development. In the present work, we report the successful development of a direct compression tablet product of acetazolamide (ACZ), using a 1:1 cocrystal of acetazolamide with p-aminobenzoic acid (ACZ-PABA). The ACZ-PABA tablet exhibits superior biopharmaceutical performance against the commercial tablet, DIAMOX® (250 mg), in healthy human volunteers, leading to more than 50 % reduction in the required dose.


Subject(s)
4-Aminobenzoic Acid , Acetazolamide , Humans , Acetazolamide/chemistry , 4-Aminobenzoic Acid/chemistry , Crystallization , Biological Availability , Healthy Volunteers , Solubility , Tablets/chemistry
7.
Int J Pharm ; 650: 123666, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38065346

ABSTRACT

Emerging evidence suggests that intestinal permeability can be potentially enhanced through cocrystallization. However, a mechanism for this effect remains to be established. In this study, we first demonstrate the enhancement in intestinal permeability, evaluated by the Caco-2 cell permeability assay, of acetazolamide (ACZ) in the presence of a conformer, p-aminobenzoic acid (PABA), delivered in the form of a 1:1 cocrystal. The binding strength of ACZ and PABA with the Pgp efflux transporter, either alone or as a mixture, was calculated using molecular dynamics simulation. Results show that PABA weakens the binding of ACZ with Pgp, which leads to a lower efflux ratio and elevated permeability of ACZ. This work provides molecular-level insights into a potentially effective strategy to improve the intestinal permeability of drugs. If the same cocrystal also exhibits higher solubility, oral bioavailability of BCS IV drugs can likely be improved by forming a cocrystal with a Pgp inhibitor.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Molecular Dynamics Simulation , Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Caco-2 Cells , 4-Aminobenzoic Acid , Permeability , Intestinal Absorption
8.
J Biosci Bioeng ; 137(1): 38-46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37977976

ABSTRACT

Paraburkholderia terrae strain KU-15 grows on 2- and 4-nitrobenzoate and 2- and 4-aminobenzoate (ABA) as the sole nitrogen and carbon sources. The genes responsible for the potential degradation of 2- and 4-nitrobenzoate and 2-ABA have been predicted from its genome sequence. In this study, we identified the pab operon in P. terrae strain KU-15. This operon is responsible for the 4-ABA degradation pathway, which involves the formation of a γ-glutamylated intermediate. Reverse transcription-polymerase chain reaction revealed that the pab operon was induced by 4-ABA. Herein, studying the deletion of pabA and pabB1 in strain KU-15 and the examining of Escherichia coli expressing the pab operon revealed the involvement of the operon in 4-ABA degradation. The first step of the degradation pathway is the formation of a γ-glutamylated intermediate, whereby 4-ABA is converted to γ-glutamyl-4-carboxyanilide (γ-GCA). Subsequently, γ-GCA is oxidized to protocatechuate. Overexpression of various genes in E. coli and purification of recombinant proteins permitted the functional characterization of relevant pathway proteins: PabA is a γ-GCA synthetase, PabB1-B3 functions in a multicomponent dioxygenase system responsible for γ-GCA dioxygenation, and PabC is a γ-GCA hydrolase that reverses the formation of γ-GCA by PabA.


Subject(s)
4-Aminobenzoic Acid , para-Aminobenzoates , para-Aminobenzoates/metabolism , 4-Aminobenzoic Acid/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Multigene Family , Nitrobenzoates/metabolism
9.
Sci Rep ; 13(1): 20226, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980374

ABSTRACT

The anaerobic region of the gastrointestinal (GI) tract has been replicated in the anaerobic chamber of a microbial fuel cell (MFC). Electroactive biomolecules released by the facultative anaerobes (Providencia rettgeri) under anoxic conditions have been studied for their potential role for redox balance. MALDI study reveals the presence of vitamin B9 (folate), 6-methylpterin, para-aminobenzoic acid (PABA) and pteroic acid called pterin pool. ATR-FTIR studies further confirm the presence of the aromatic ring and side chains of folate, 6-methylpterin and PABA groups. The photoluminescence spectra of the pool exhibit the maximum emission at 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm wavelengths (day 20 sample) highlighting the presence of tunable bands. The cyclic voltammetric studies indicate the active participation of pterin pool molecules in the transfer of electrons with redox potentials at - 0.2 V and - 0.4 V for p-aminobenzoate and pterin groups, respectively. In addition, it is observed that under prolonged conditions of continuous oxidative stress (> 20 days), quinonoid tetrahydrofolate is formed, leading to temporary storage of charge. The results of the present study may potentially be useful in designing effective therapeutic strategies for the management of various GI diseases by promoting or blocking folate receptors.


Subject(s)
4-Aminobenzoic Acid , Folic Acid , Humans , Pterins , Bacteria , Intestines
10.
Biochemistry ; 62(22): 3276-3282, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37936269

ABSTRACT

Chlamydia protein associating with death domains (CADD), the founding member of a recently discovered class of nonheme dimetal enzymes termed hemeoxygenase-like dimetaloxidases (HDOs), plays an indispensable role in pathogen survival. CADD orchestrates the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate via the self-sacrificial excision of a protein-derived tyrosine (Tyr27) and several additional processing steps, the nature and timing of which have yet to be fully clarified. Nuclear magnetic resonance (NMR) and proteomics approaches reveal the source and probable timing of amine installation by a neighboring lysine (Lys152). Turnover studies using limiting O2 have identified a para-aminobenzaldehyde (pABCHO) metabolic intermediate that is formed on the path to pABA formation. The use of pABCHO and other probe substrates shows that the heterobimetallic Fe/Mn form of the enzyme is capable of oxygen insertion to generate the pABA-carboxylate.


Subject(s)
4-Aminobenzoic Acid , para-Aminobenzoates , para-Aminobenzoates/metabolism , 4-Aminobenzoic Acid/metabolism , Folic Acid/metabolism
11.
Int J Biol Macromol ; 253(Pt 6): 127277, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37806410

ABSTRACT

For chemical modification, p-aminobenzoic acid was incorporated into chitosan Schiff base (ACsSB) and chitosan (ACs). Two ACs-based CuO nanoparticles composites; ACs/CuONPs-1 % and ACs/CuONPs-5 %, were also synthesized. Their structures were emphasized utilizing several analytical techniques; elemental analysis, FTIR, 1H NMR, XRD, SEM, EDX and TEM. Compared with standard cyclooxygenase (COX) inhibitor, Celecoxib, the prepared biomaterials showed in vitro selective inhibitory effectiveness against COX-2 enzyme that could be sorted, according to their MIC values that produce 50 % inhibition of COX-2 enzyme activity, as follows: Celecoxib (0.28 µg/mL) > ACs/CuONPs-5 % (4.1 µg/mL) > ACs/CuONPs-1 % (14.8 µg/mL) > ACs (38.5 µg/mL) > ACsSB (58.9 µg/mL) > chitosan (>125 µg/mL). Further, ACs/CuONPs-5 % has more in vitro inhibition efficiency towards Helicobacter pylori (H. pylori) than the other prepared biomaterials. Interestingly, the MIC value of 100 % growth inhibition of H. pylori for ACs/CuONP-5 % is equal to that of drug Clarithromycin (1.95 µg/mL). Thus, ACs/CuONPs-5 % has a promising potential as anti-H. pylori and selective anti-inflammatory agent. ACs/CuONPs-5 % is safe on the human gastric normal cells (GES-1). Therefore, amalgamation of both p-aminobenzoic acid and CuONPs into chitosan extremely promoted its anti-inflammatory and anti-H. pylori activity. This is a promising approach to achieve methods successful to compete the conventional antibiotics.


Subject(s)
Chitosan , Helicobacter pylori , Metal Nanoparticles , Nanoparticles , Humans , Chitosan/pharmacology , Chitosan/chemistry , Biocompatible Materials/pharmacology , Copper/pharmacology , Copper/chemistry , 4-Aminobenzoic Acid , Celecoxib , Cyclooxygenase 2 , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents , Oxides , Metal Nanoparticles/chemistry
12.
Chem Biol Drug Des ; 102(6): 1336-1352, 2023 12.
Article in English | MEDLINE | ID: mdl-37783571

ABSTRACT

Despite the successful reduction in the malaria health burden in recent years, it continues to remain a significant global health problem mainly because of the emerging resistance to first-line treatments. Also because of the disruption in malaria prevention services during the COVID-19 pandemic, there was an increase in malaria cases in 2021 compared to 2020. Hence, the present study outlined the in silico study, synthesis, and antimalarial evaluation of 1,3,5-triazine hybrids conjugated with PABA-glutamic acid. Docking study revealed higher binding energy compared to the originally bound ligand WR99210, predominant hydrogen bond interaction, and involvement of key amino acid residues, like Arg122, Ser120, and Arg59. Fourteen compounds were synthesized using traditional and microwave synthesis. The in vitro antimalarial evaluation against chloroquine-sensitive 3D7 and resistant Dd2 strain of Plasmodium falciparum showed a high to moderate activity range. Compounds C1 and B4 showed high efficacy against both strains and a further study revealed that compound C1 is non-cytotoxic against the HEK293 cell line with no acute oral toxicity. In vivo, study was performed for the most potent antimalarial compound C1 to optimize the research work and found to be effectively suppressing parasitemia of Plasmodium berghei strain in the Swiss albino mice model.


Subject(s)
Antimalarials , Malaria , Animals , Mice , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , Glutamic Acid/therapeutic use , 4-Aminobenzoic Acid/therapeutic use , Oxidoreductases , Folic Acid , HEK293 Cells , Pandemics , Malaria/drug therapy , Triazines/pharmacology , Triazines/chemistry
13.
J Infect Dis ; 228(Suppl 4): S281-S290, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788505

ABSTRACT

BACKGROUND: Vertebral discitis-osteomyelitis (VDO) is a devastating infection of the spine that is challenging to distinguish from noninfectious mimics using computed tomography and magnetic resonance imaging. We and others have developed novel metabolism-targeted positron emission tomography (PET) radiotracers for detecting living Staphylococcus aureus and other bacteria in vivo, but their head-to-head performance in a well-validated VDO animal model has not been reported. METHODS: We compared the performance of several PET radiotracers in a rat model of VDO. [11C]PABA and [18F]FDS were assessed for their ability to distinguish S aureus, the most common non-tuberculous pathogen VDO, from Escherichia coli. RESULTS: In the rat S aureus VDO model, [11C]PABA could detect as few as 103 bacteria and exhibited the highest signal-to-background ratio, with a 20-fold increased signal in VDO compared to uninfected tissues. In a proof-of-concept experiment, detection of bacterial infection and discrimination between S aureus and E coli was possible using a combination of [11C]PABA and [18F]FDS. CONCLUSIONS: Our work reveals that several bacteria-targeted PET radiotracers had sufficient signal to background in a rat model of S aureus VDO to be potentially clinically useful. [11C]PABA was the most promising tracer investigated and warrants further investigation in human VDO.


Subject(s)
Discitis , Osteomyelitis , Staphylococcal Infections , Humans , Rats , Animals , Discitis/diagnostic imaging , 4-Aminobenzoic Acid , Escherichia coli , Positron-Emission Tomography/methods , Staphylococcal Infections/diagnostic imaging , Osteomyelitis/microbiology , Bacteria , Staphylococcus aureus , Radiopharmaceuticals
14.
Arch Microbiol ; 205(12): 363, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906281

ABSTRACT

In bacteria and primitive eukaryotes, sulfonamide antibiotics block the folate pathway by inhibiting dihydropteroate synthase (FolP) that combines para-aminobenzoic acid (pABA) and dihydropterin pyrophosphate (DHPP) to form dihydropteroic acid (DHP), a precursor for tetrahydrofolate synthesis. However, the emergence of resistant strains has severely compromised the use of pABA mimetics as sulfonamide drugs. Salmonella enterica serovar Gallinarum (S. Gallinarum) is a significant source of antibiotic-resistant infections in poultry. Here, a sulfonamide-resistant FolP mutant library of S. Gallinarum was generated through random mutagenesis. Among resistant strains, substitution of amino acid Arginine 171 with Proline (R171P) in the FolP protein conferred the highest resistance against sulfonamide. Substitution of Phe28 with Leu or Ile (F28L/I) led to modest sulfonamide resistance. Structural modeling indicates that R171P and Phenylalanine 28 with leucine or isoleucine (F28L/I) substitution mutations are located far from the substrate-binding site and cause insignificant conformational changes in the FolP protein. Rather, in silico studies suggest that the mutations altered the stability of the protein, potentially resulting in sulfonamide resistance. Identification of specific mutations in FolP that confer resistance to sulfonamide would contribute to our understanding of the molecular mechanisms of antibiotic resistance.


Subject(s)
4-Aminobenzoic Acid , Dihydropteroate Synthase , Dihydropteroate Synthase/genetics , Dihydropteroate Synthase/chemistry , Dihydropteroate Synthase/metabolism , Anti-Bacterial Agents/metabolism , Sulfanilamide , Sulfonamides/pharmacology , Sulfonamides/chemistry , Mutation
15.
Article in English | MEDLINE | ID: mdl-37820471

ABSTRACT

Tattoos have been gaining popularity in recent years, leading to a growing interest in researching tattoo inks and the tattooing process itself. Since the exposure to soluble tattoo ink ingredients has not yet been investigated, we here present the method validation for a short-term biokinetics study on soluble tattoo ink ingredients. The three tracers 4-aminobenzoic acid (PABA), 2-phenoxyethanol (PEtOH) and iodine will be added to commercially available tattoo inks, which will subsequently be used on healthy study participants. Following the tattooing process, blood and urine will be sampled at specific time points and analysed for these tracers. For this purpose, a method using liquid chromatography separation coupled to a quadrupole time-of-flight mass spectrometer (LC-QTOF-MS) in positive and negative ESI mode for the quantification of PABA, PEtOH and selected metabolites and an inductively-coupled plasma (ICP)-MS method for the determination of iodine were developed and validated. For LC-QTOF-MS analysis, the most applicable additives for LC eluents (0.01 % formic acid for positive and 0.005 % acetic acid for negative mode) were identified. Protein precipitation with acetonitrile was chosen for sample preparation. The methods were validated for selectivity, specificity, carryover, linearity, limit of detection (LOD) and quantification (LOQ), matrix effects, accuracy and precision, stability under different conditions and dilution integrity according to national and international guidelines with an allowed maximum variation of ±15 %. The LC-QTOF-MS method met the imposed guideline criteria for most parameters, however, some metabolites showed strong matrix effects. Validation of the ICP-MS method revealed that the KED-H2 collision mode is superior to the standard analysis mode due to enhanced method accuracy. The methods were validated for the relevant matrices plasma, urine, tattoo ink and tattoo consumables and proved to be applicable for the main target substances in the short-term biokinetics study. A proof-of-concept study showed successful quantification of iodine and PABA metabolites. The PEtOH metabolite was also quantified, but showed strong matrix effects in urine. Therefore standard addition was selected as an alternative quantification method.


Subject(s)
Iodine , Tattooing , Humans , 4-Aminobenzoic Acid , Ink , Mass Spectrometry/methods
16.
Biosensors (Basel) ; 13(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37754131

ABSTRACT

Breast cancer (BC) is one of the most common types of cancer disease worldwide and it accounts for thousands of deaths annually. Lapatinib is among the preferred drugs for the treatment of breast cancer. Possible drug toxicity effects of lapatinib can be controlled by real-time determination of the appropriate dose for a patient at the point of care. In this study, a novel highly sensitive polymeric nanobiosensor for lapatinib is presented. A composite of poly(anilino-co-4-aminobenzoic acid) co-polymer {poly(ANI-co-4-ABA)} and coffee extract-based green-synthesized indium nanoparticles (InNPs) was used to develop the sensor platform on a screen-printed carbon electrode (SPCE), i.e., SPCE||poly(ANI-co-4-ABA-InNPs). Cytochrome P450-3A4 (CYP3A4) enzyme and polyethylene glycol (PEG) were incorporated on the modified platform to produce the SPCE||poly(ANI-co-4-ABA-InNPs)|CYP3A4|PEG lapatinib nanobiosensor. Experiments for the determination of the electrochemical response characteristics of the nanobiosensor were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The nanobiosensor calibration for 0-100 ng/mL lapatinib was linear and gave limit of detection (LOD) values of 13.21 ng/mL lapatinib and 18.6 ng/mL lapatinib in physiological buffer and human serum, respectively. The LOD values are much lower than the peak plasma concentration (Cmax) of lapatinib (2.43 µg/mL), which is attained 4 h after the administration of a daily dose of 1250 mg lapatinib. The electrochemical nanobiosensor also exhibited excellent anti-interference performance and stability.


Subject(s)
Antineoplastic Agents , Biosensing Techniques , Breast Neoplasms , Nanoparticles , Humans , Female , Lapatinib , Breast Neoplasms/drug therapy , 4-Aminobenzoic Acid , Indium , Pharmaceutical Preparations , Cytochrome P-450 CYP3A , Electrodes , Electrochemical Techniques
17.
Acta Crystallogr D Struct Biol ; 79(Pt 10): 895-908, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37712435

ABSTRACT

4-Amino-4-deoxychorismate synthase (ADCS), a chorismate-utilizing enzyme, is composed of two subunits: PabA and PabB. PabA is a glutamine amidotransferase that hydrolyzes glutamine into glutamate and ammonia. PabB is an aminodeoxychorismate synthase that converts chorismate to 4-amino-4-deoxychorismate (ADC) using the ammonia produced by PabA. ADCS functions under allosteric regulation between PabA and PabB. However, the allosteric mechanism remains unresolved because the structure of the PabA-PabB complex has not been determined. Here, the crystal structure and characterization of PapA from Streptomyces venezuelae (SvPapA), a bifunctional enzyme comprising the PabA and PabB domains, is reported. SvPapA forms a unique dimer in which PabA and PabB domains from different monomers complement each other and form an active structure. The chorismate-bound structure revealed that recognition of the C1 carboxyl group by Thr501 and Gly502 of the 498-PIKTG-502 motif in the PabB domain is essential for the catalytic Lys500 to reach the C2 atom, a reaction-initiation site. SvPapA demonstrated ADCS activity in the presence of Mg2+ when glutamate or NH+4 was used as the amino donor. The crystal structure indicated that the Mg2+-binding position changed depending on the binding of chorismate. In addition, significant structural changes were observed in the PabA domain depending on the presence or absence of chorismate. This study provides insights into the structural factors that are involved in the allosteric regulation of ADCS.


Subject(s)
4-Aminobenzoic Acid , Glutamine , 4-Aminobenzoic Acid/metabolism , Glutamine/metabolism , Ammonia , Glutamates
18.
Chemosphere ; 341: 139883, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37672813

ABSTRACT

It has been globally recognized that obesity has become a major public health concern, especially childhood obesity. There is limited information, however, regarding the exposure risk of organic ultraviolet (UV) filters, a kind of emerging contaminant, on childhood obesity. This study would be made on 284 obese and 220 non-obese Chinese children with eight organic UV filters at urinary levels. The eight organic UV filters, including 2-Ethylhexyl 4-aminobenzoate (PABA-E), octisalate (EHS), homosalate (HMS), 2-Ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP-3), amiloxate (IAMC), octocrylene (OC) and 4-Methylbenzylidene camphor (4-MBC) were identified in urine samples with detection rates ranged from 35.32% to 100%, among which PABA-E, HMS, IAMC and OC were firstly detected in children' s urine. And the urinary UV filters concentration was associated with genders, living sites, guardian education levels, household income, and dietary factors. Urinary EHMC concentrations and childhood obesity were positively associated for girls [Adjusted OR = 2.642 (95% CI: 1.019, 6.853)], while OC concentrations and childhood obesity were negatively associated for girls [Adjusted OR = 0.022 (95% CI: 0.001, 0.817)]. The results suggest that EHMC exposure may be an environmental obesogen for girls. Moreover, two statistical models were used separately to evaluate the impact of UV filter mixtures on childhood obesity, including the Bayesian kernel machine regression (BKMR) model and the quantile g-computation (qgcomp) model. The negative association between UV filter mixtures and childhood obesity was proposed from both BKMR and qgcomp models. Further experimental and epidemiological studies are called upon to discern the individual and mixture impacts of organic UV filters on childhood obesity.


Subject(s)
Pediatric Obesity , Child , Male , Humans , Female , Case-Control Studies , 4-Aminobenzoic Acid , Bayes Theorem
19.
Appl Microbiol Biotechnol ; 107(19): 5963-5974, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37552251

ABSTRACT

Synthesis of nanoparticles (NPs) through plant extracts has been suggested as an effective and nature-friendly method. Paclitaxel is one of the most valuable secondary metabolites with therapeutic uses, and hazelnut has been suggested as one of the sustainable resources for producing this metabolite. In the present study, we synthesized Ag NPs using the ethanolic extract of C. avellana leaves and were characterized using UV-visible, FTIR, XRD, EDX, DLS, SEM, and TEM analyses. In addition, we investigated the effect of green synthesized Ag (GS Ag) NPs (5 and 10 mg/L), para-aminobenzoic acid (PABA) (20 mg/L), and AgNO3 (10 mg/L) on cell viability, physiological characteristics, gene expression, and biosynthesis of secondary metabolites in hazelnut cell cultures. The results showed that 10 mg/L Ag NPs and AgNO3 significantly affected the cell viability, the content of ROS, peroxidation of lipids, antioxidant capacity, secondary metabolite production, and expression pattern of the genes involved in the taxanes biosynthesis pathway in the hazelnut cells. The cytotoxicity increased by increasing the GS Ag NPs concentration from 5 to 10 mg/L, which was associated with reduced membrane integrity and cell viability. Elicitation of the cells with 10 mg/L Ag NPs combined with 20 mg/L PABA (as a precursor) remarkably excited the expression of TAT and GGPPS genes and the production of secondary metabolites as well as paclitaxel. So that the highest expression of TAT and GGPPS genes (3.71 and 3.69) and the highest amount of taxol (230.21 µg g-1 FW) and baccatin (1025.8 µg g-1 FW) were observed in this treatment. KEY POINTS: • For the first time, we assessed and reported the molecular and physiological responses of C. avellana cells to GS Ag NPs, AgNO3, and PABA. • In hazel cells, GS Ag NPs stimulate several physiological and molecular responses. • In addition to increasing antioxidant activity, GS Ag NPs significantly increased the expression of genes involved in the paclitaxel biosynthesis pathway and the production of secondary metabolites.


Subject(s)
Corylus , Metal Nanoparticles , Paclitaxel , Corylus/metabolism , 4-Aminobenzoic Acid/metabolism , Silver/pharmacology , Silver/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Gene Expression
20.
J Gastroenterol Hepatol ; 38(11): 1949-1957, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37501507

ABSTRACT

BACKGROUND AND AIM: Apolipoprotein A2 (apoA2) isoforms have been reported to undergo the aberrant processing in pancreatic cancer and pancreatic risk populations compared with that in healthy subjects. This study aimed to clarify whether apoA2 isoforms were as useful as N-benzoyl-p-aminobenzoic acid (BT-PABA) test for exocrine pancreatic dysfunction markers in patients with early chronic pancreatitis (ECP). METHODS: Fifty consecutive patients with functional dyspepsia with pancreatic enzyme abnormalities (FD-P) (n = 18), with ECP (n = 20), and asymptomatic patients with pancreatic enzyme abnormalities (AP-P) (n = 12) based on the Rome IV classification and the Japan Pancreatic Association were enrolled in this study. The enrolled patients were evaluated using endoscopic ultrasonography and endoscopic ultrasonography elastography. Five pancreatic enzymes were estimated. Pancreatic exocrine function was analyzed using the BT-PABA test. Lighter and heavier apoA2 isoforms, AT and ATQ levels were measured by enzyme-linked immunosorbent assay methods. RESULTS: There were no significant differences in clinical characteristics such as age, gender, body mass index, alcohol consumption and smoking among patients with AP-P, FD-P, and ECP. The BT-PABA test and lighter apoA2 isoform, AT level in the enrolled patients had a significant correlation (P < 0.01). The BT-PABA test in patients with ECP was significantly lower (P = 0.04) than that in AP-P. ApoA2-AT level in patients with ECP was lower than that in AP-P, albeit, insignificantly. Interestingly, apo A2-AT level was significantly (P = 0.041) associated with exocrine pancreatic insufficiency by multiple logistic regression analysis. CONCLUSIONS: ApoA2-AT level is a useful tool to evaluate exocrine pancreatic insufficiency in the early stage of chronic pancreatitis.


Subject(s)
Apolipoprotein A-II , Exocrine Pancreatic Insufficiency , Pancreatitis, Chronic , Humans , 4-Aminobenzoic Acid , Apolipoprotein A-II/metabolism , Exocrine Pancreatic Insufficiency/complications , Pancreatic Function Tests/methods , Pancreatitis, Chronic/complications , Pancreatitis, Chronic/diagnostic imaging , Protein Isoforms/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...